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Abstract

This document contains a description of the simulation approach used to test the

performance of the NASA airborne windshear radar. Explanation of the actual radar

hardware and processing algorithms provides an understanding of the parameters used

in the simulation program. This report also contains a brief overview of the NASA airborne

windshear radar experimental flight test results. A description of the radar simulation

program shows the capabilities of the program and the techniques used for certification

evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of

the ground clutter data must be made. The ground clutter is the return from objects in or

nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight

path since ground clutter is gathered while in flight. The second step is the choice of the

radar parameters and the running of the simulation program which properly combines the

ground clutter data with simulated windshear weather data. The simulated windshear

weather data is comprised of a number of TASS (Terminal Area Simulation System)

model results. The final step is the comparison of the radar simulation results to the

known windshear data base. The final evaluation of the radar simulation is based on the

ability to detect hazardous windshear with the aircraft at a safe distance while at the same

time not displaying false alerts.
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Conversion Table

Conversion Factors for Metric (SI) to Customary U.S. Units

To Convert

cubic meter (m 3)

gram (g)

kilometer (km)

kilometer (km)

meter (m)

meters per second (m/s)

meters per second (m/s)

meters per second (m/s)

Multiply by To Get

35.31 cubic feet (cu ft)

0.035274 ounces (oz)

0.62137 statute miles

0.5396 nautical miles

3.2808 feet (ft)

196.8 feet per minute (ft/min)

1.9426 knots

2.237 miles per hour (mph)
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Glossary

FBAR

hazardous
windshear

ILS

microburst

performance-
decreasing
winds

PPI

stable layer

TASS

thunderstorm

gust front

An average of the wind shear hazard index (F-factor) taken over a
flight path segment of a specified distance (1 km in this document).

Region of performance-decreasing winds with a 1-km averaged F-
factor exceeding 0.105.

Instrument Landing System -- A system designed to provide an
approach path for exact alignment and descent of an aircraft on final

approach to a runway (Airman's Information Manual, 1993).

Region of divergent windshear that has a horizontal wind change of
at least 10 m/s within a 4-km segment.

Windshear that causes a loss of aircraft performance.

Plan Position Indicator -- a display of selected parameters as a
function of range and azimuth position relative to the aircraft.

A vertical thickness of air with static stability: a parcel displaced
vertically within such a layer is subjected to a buoyant force opposite
to its displacement.

Terminal Area Simulation System -- A multi-dimensional numerical
large-eddy simulation model developed at NASA Langley Research
Center for the general purpose of studying phenomena such as
microbursts, convective rain storms, gust fronts, hailstorms,
atmospheric boundary layers, and aircraft wake vortices.

The transition zone at the leading edge of strong outflow from
thunderstorm downdrafts, often referred to as "gust front."

vii





1.0 Introduction

1.1 Purpose

The purpose of this report is to describe the performance of the NASA airborne

forward-looking windshear radar system against established certification procedures.
The radar was installed on the NASA Boeing 737 research aircraft and has been a test

bed for evaluating the ability of an airborne radar to warn aircraft about potential

encounters with hazardous windshear (Harrah et al. 1993). The testing of the NASA radar
is based on the FAA requirements to certify an airborne windshear detection system.

The certification testing process involves three phases. The first phase involves

gathering radar ground clutter data from particular airport facilities using an airborne radar
flown on specified flight scenarios. Radar ground clutter is the signal return from objects

on or nearby the airport facility. The second phase is to simulate the radar performance
in an environment which is the result of the proper combination of the environmental

ground clutter data and a simulated windshear environment. The windshear environment

is one of seven cases contained within the windshear database developed at NASA

Langley Research Center (Switzer et al. 1993). The final phase is the evaluation of the

performance of the NASA radar system with the windshear data base. This numerical

simulation approach provides a quick and accurate method of evaluating the NASA

airborne forward-looking windshear radar in situations of low airspeed and altitude.

1.2 Background

The need for a sensor to detect low-altitude windshear was recognized in the mid-

1980's. In the United States, during the period 1964 to 1985, windshear has been a

contributing factor in at least 26 civil transport accidents and 3 incidents involving 500

fatalities and over 200 injuries (Bowles 1990). The Federal Aviation Administration (FAA)

established a focused research and development program over a multi-year period.

NASA signed a memorandum of agreement with the FAA in July 1986 to pursue a

cooperative research program to address problems related to airborne detection,

avoidance, and survivability of hazardous windshear environments (Bowles 1990).

One of the sensors investigated for the airborne windshear detector is microwave

pulse Doppler radar. A comprehensive airborne Doppler radar simulation program was

first developed to assess the feasibility of airborne Doppler radar to detect hazardous

windshear with critical areas of concern being severe ground clutter, rain attenuation and

low reflectivity levels. After successful completion of the assessment phase, an

experimental airborne Doppler radar was developed (Harrah et al. 1993). The NASA

radar is a prototype of forward-looking windshear radar systems and has been

instrumental in assisting the FAA with assessing the performance of commercial airborne

windshear radar systems. The NASA system is not a commercial system, therefore there

was no need for certification. However, it has undergone extensive evaluation in both field

studies and simulation testing. This report brings to a conclusion the effort of the NASA

airborne radar system by documenting the characteristics of the hardware, the details of

the simulation strategy, and the results of the simulation performance testing.



1.3 Overview of Documentation

The NASA airborne radar system is described in section 2.0. The description

details the hardware, signal and data processing algorithms, and the experimental flight

tests. Section 3.0 describes the radar simulation program. Descriptions of the windshear

database along with the certification paths to be used with each data set are found in
section 4.0.

Section 4.0 also contains descriptions of the simulation case runs that were

performed. The results of the simulation runs are detailed in section 5.0 and concluding

remarks are made in section 6.0. Plots of radar clutter PPI (Plan Position Indicator) plots
are shown in appendix A and selected PPI plots of simulation results are shown in
appendix B.

Appendix C contains line plots comparing measured hazard and wind velocity with
actual database values along a particular azimuth line.

:> ::i ¸
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2.0 Description of NASA Airborne Radar System

2.1 Hardware Implementation

An experimental airborne radar was designed and implemented to collect ground

clutter data and evaluate and verify wind shear detection capability of an airborne X-band

Doppler radar. The radar implemented utilized a modified-production 708 weather radar
like those used in commercial airlines. A number of key modifications and enhancements

were incorporated in the 708 radar. External systems for signal detection, data

processing, and data storage were added. The 708 radar includes a flat plate slot array

antenna, a receiver/transmit (R/T) unit, and a control and display unit. The modifications
to the basic unit included multiple and higher pulse repetition frequencies (PRF) multiple

and more narrow transmission pulse widths, higher transmitter power, increase number
of antenna control functions, and a number of output interface connections from various

portions of the R/T unit. Improvements to the stability and low-phase noise characteristics

of the stable local oscillator were also incorporated. NASA procured the standard 708

radar, with the specified modifications, from the Rockwell-Collins Corp. Collins produces

standard 708 weather radars for the commercial airline industry. The additional external

systems were designed and built in-house by NASA.

The NASA-designed external systems include a receiver sub-system which
employs a fast-acting bin-to-bin Automatic Gain Control (AGC) system, a 12-bit digitized

I/Q (In-phase & Quadrature) detector, a digital interface unit responsible for generating

system timing and control signals, and a 14-track Kodak Data Tape flight recorder. The
raw I/Q data pulses were recorded on the flight Data Tape for later processing and

analysis. A real-time signal and data processor system was also employed during flight

tests so radar velocity and hazard factor PPI displays could be presented to the pilots and

researchers on the airplane. Harrah et al. provides a more detail description of the radar

design and flight test results.

2.2 Signal and Data Processing Algorithms

A detailed analysis and performance assessment was conducted on data collected

during the flight experiments to evaluate the windshear detection performance of the

radar. Each raw I/Q data file was processed through a set of signal and data processing

algorithms to determine the wind velocities, rain reflectivity, F-factors, and hazardous

windshear detected by the radar. The F-factor is a quantitative measure of the effect of

the windshear to either increase or decrease the performance of the aircraft. Positive

values of F-factor are related to performance decreasing winds and negative values relate

to performance increasing winds. The F-factor equation was originally explained in

Bowles (1990). The results were evaluated to determine the capability of the radar to

detect and alert of hazardous windshear. A baseline set of algorithms and threshold

settings were used for the analysis. For the radar simulation performance testing

described in this document, a similar set of algorithms and threshold settings were used.

Table 2.1 lists the baseline signal processing techniques used for clutter rejection and

velocity estimation. The techniques used for total hazard index estimation and the
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procedure for assessing the hazard level are listed in Table 2.2. Table 2.3 lists the key

thresholds used in the baseline algorithms when processing the radar data generated
during the simulation runs.

Table 2.1 Clutter Rejection & Velocity Estimation

• Separate AGC for each range bin to allow processing with maximum dynamic range

• Antenna tilt control to reduce main beam clutter

• A/C velocity compensation

• Data processed through HANN window

• 128 pulse FFT Doppler processing

• Stationary ground clutter filtering using Doppler line editing of 0 3 m/s

• Compute mean and standard deviation of target velocity using Pulse-Pair algorithm
in the frequency domain

Table 2.2 Hazard Estimation Procedure

• Velocity gradient is estimated over 5 range bins least-square fit

• If least-squares residual is less than a residual threshold continue hazard index (FT)
computation

• Compute Fh component of hazard index

• Compute FV add to F h to obtain F T

• Compute moving average of the FT values over range window = 1000 meters

• Determine contiguous regions in radar scan that exceed FT threshold. Calculate area(s)

• Identify area(s) in excess of an area threshold and track the region centroid with
track-while-scan algorithm

• If hazard region exists for 2 consecutive scans & time to closest approach is less than 100
sec, then alert on hazardous area.
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Table 2.3 Threshold Levels Used For Flight Experiments

Minimum signal level for processing -112 dBm

Minimum SNR level for processing - 3 dB

Maximum spectrum width on velocity estimation 10 m/s

Velocity slope estimation residual 3 m/s

Hazard factor (FT) threshold .105

Area threshold .2 sq. km

Track distance threshold 750 m

Successive tracks 2

Time to closest approach 100 s

2.3 Experimental Flight Tests

An extensive flight test program was conducted to assess the wind shear detection

performance of the airborne Doppler radar as well as other airborne sensors systems.

Wind shear testing of these systems were coordinated between ground-based radars, the

ATC (Air Traffic Control) system, and various governmental and research organizations.

Wind shear flight experiments (38 in all) were performed primarily around the Orlando, FL

airport (MCO), and Denver, CO airport (DEN), in the summers of 1991 and 1992. Table
2.4 summarizes the total wind shear events encountered during these flight experiments.

Listed are the F-factor levels and in situ alerts encountered by the aircraft and the number

of wind shear events detected by the radar. Since the radar was scanning a large area in

front of the aircraft (usually a 60 ° sector out to ~13 km), more wind shear events were

seen and detected by the radar than were encountered by the aircraft. In many cases,

the aircraft turned away from these events since either the reflectivity or F-factor

exceeded the safe levels for aircraft penetration.

Table 2.4 Summary of Wind Shear Events Encountered: 1991&1992 Flight

Experiments

Flight
Location

Aircraft

Flights
Weather
Runs

Aircraft Wind Shear Encounters

In Situ (FT>0.05)

FT<0.105 FT>0.105 Total

Airborne
Radar
Detection

Orlando 19 221 43 12 55 70

Denver 19 134 15 6 21 27

Total 38 355 58 18 76 97

A total of 76 wind shear events (where F T >.05) were encountered by the aircraft

during the wind shear flight experiments. The radar obtained data from all but two of the

76 events. During these two events the radar tape recorder was off when the aircraft
encountered a small unknown shear event while in a high-bank turn. Both of these
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events, which occurred in Denver, were undetected by the ground radar. As shown in the
table 2.4, the radar detected and recorded data from 21 additional events in Denver. Of

the total aircraft encounters, 18 produced in situ alerts (F T >.105). The remaining 58

events had F-factor values between .05 and .105.

A broad spectrum of microburst and gust front events were encountered during the

flight experiments. The analysis of this data illustrated the wide range of hazardous

windshear characteristics a pilot can encounter, and the capability of the radar to detect

these events and provide timely pilot alerts. The analysis of the flight data showed that

the radar can detect both dry and wet microbursts, both symmetrical and unsymmetrical

microbursts, as well as hazardous gust fronts. It was also shown that, over the ranges

required to provide timely alerts, rain attenuation is not a serious problem for detecting
hazardous windshear.
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3.0 Description of Radar Simulation Program

3.1 General Discussion

The certification process presents unique problems because of the near-

impossibility of testing the proposed systems in a realistic environment. While the NASA

tests of the experimental system demonstrated the possibility of observing numerous

hazardous windshears in flight tests, the windshears observed were not generally located

in areas of severe ground clutter as may be encountered on a landing approach or takeoff.

Also, safety and operational factors prohibit flight tests through hazardous windshear at

low altitudes and slow aircraft speeds. For these reasons, a simulation approach was

used in early evaluations of the NASA system concept, with the validity of the simulation

later confirmed by data from flight test of the NASA experimental system.

The success of the NASA system and microburst simulation approach led to a

certification methodology consisting of a combination of flight tests and simulation. In this

concept, illustrated in Figure 3.1, ground clutter data will be collected by manufacturers of

systems being considered for certification at several severe clutter locations (e.g.,

Washington National, Newark, and Denver) and will be merged with simulated microburst

data generated by the Terminal Area Simulation System (TASS) (Proctor 1987a, 1987b,

1988a, 1988b, 1989, 1993, Proctor and Bowles 1992, Proctor et a11995). The merged

data will then be subjected to the signal, data processing, display, and hazard alert

algorithms of the proposed system (using actual hardware or hardware emulation) to

determine the success of the system in meeting the FAA-specified performance goals.

REAL CLU-I-I'ER DATAFROM FLI( IHT TESTS
l SIMULATED WEATHER I

DATA FROM TASS MODELJ

Newark 4R

Denver 26L

National 18

SYSTEM PERFORMANCE 1EVALUATION

Figure 3.1 Illustration of Certification Methodology Using Merged Flight and
Simulated Data.
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To test the certification concept, the techniques were applied to the NASA
experimental system. As mentioned above, extensive simulations had been conducted
to determine the performance characteristics of the NASA system. After development of
the experimental hardware, programs were developed to test various signal and data
processing routines using the experimenta! flight data. The testing of the certification
concept required the use of both the simulation and flight data processing programs and
the development of algorithms to properly merge the flight and simulated data.

The following sections provide a description of the simulation approach used

initially to predict the windshear detection performance of the NASA experimental Doppler

radar and a description of the flight data processing program used to process radar flight

data. Parts of the simulation (i.e., those associated with the generation of signals from a
simulated microburst) were then incorporated into the flight data processing program

along with (new) data merging algorithms to properly combine the simulated microburst

signals with the real radar (clutter) data.

3.2 General Description of the Radar Simulation

As a vehicle for determining system performance under realistic conditions, a

comprehensive computer simulation of a pulse-Doppler airborne radar was developed

(Britt 1990). The simulation program (Airborne Windshear Doppler Radar Simulation -

AWDRS) has been used extensively in the NASA program to evaluate radar parameter

trade-offs and various signal and data processing techniques proposed to reliably detect

windshear in the presence of ground clutter.

The radar simulation computer model is a comprehensive calculation of the

expected outputs of an airborne coherent pulsed-Doppler radar system viewing a low-

level microburst along or near the approach path of the aircraft. The simulation contains

algorithms for direct calculation of radar signal returns from data files that provide, at any

point in space, the radar reflectivity of moisture and the scattering cross section of ground

clutter. The instantaneous radar signal amplitude and phase is calculated by spatially

integrating the radar equation over a large population of incremental scatterers (i.e., a

Monte-Carlo calculation). Further calculations simulate the signal processing done by a

coherent radar in filtering the signal, providing Automatic Gain Control (AGC), forming in-

phase (I) and quadrature (Q) base-band signal components, converting the I and Q

signals to digital values, filtering the I and Q signals, and deriving Doppler velocity,

spectral width, shear hazard, and other radar outputs of interest.

The detailed nature of the simulation permits the quick evaluation of proposed

trade-offs in radar system parameters and the evaluation of the performance of proposed

configurations in various microburst/clutter environments. The simulation also provides a

test bed for various proposed signal processing techniques for minimizing the effects of

noise, phase jitter, and ground clutter as well as maximizing the useful information derived

for avoidance of microburst windshear by aircraft.
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Figure 3.2 isa block diagram indicatingthe major featuresof the simulation. Inputs

to the program include an input file specifying the radar system parameters and large data

files that contain the characteristics of the ground clutter and the microburst. The ground

clutter data file consists of high-resolution (20m grid) calibrated synthetic aperture radar

I RADAR SIMULATION I

New

Range Bin

I CalculateRain Return

i{ Radar Parameters

_.! Input Antenna Patterns

I Data Aircraft Position

Microburst Position

I Ca,cu,ateClutter Return

I MovingClutter Return

I Add SystemNoise & Jitter

I CalculateI & Q Pulses

Simulated AGC &

ND Quantization

l SignalProcessing

t
Write OutputFiles

t

I
I
I

Microburst

Data Base

Clutter Map
Data Base

Discrete Target
Data Base

I Store Raw; Radar Data

rSignal Levels
Clutter Levels

Derived Velocity
Shear Hazard Index

Turbulence

Doppler Spectra

Autoregressive Model Coeff.

Figure 3.2 Flow Chart of the General Organization of the Airborne Doppler
Windshear Radar Simulation (ADWRS) Program.
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(SAR) data of selected airport areas collected by the Environmental Research Institute of
Michigan (ERIM).

The microburst data files provide reflectivity factors, x,y,z wind velocity
components and other meteorological parameters (Switzeret al. 1993). This data base
has been created by TASS and is described in section 4.1.

For each range bin, the simulation calculates the received signal amplitude level
by integrating the product of the antenna gain pattern and scattering source amplitude
and phaseover a spherical-shell volume segment defined bythe pulse width, radar range,
and ground plane intersection. The amplitude of the return from each incremental
scatterer in the volume segment is proportional to either the square root of the normalized
cross-section of the ground clutter (from the clutter map) or the square root of the
reflectivity factor of the moisture in the microburst (from the microburst data base). The
phase of each incremental scatterer is the sum of a uniformly-distributed (0 - 2_) random
phase term, a phase term due to relative aircraft-scatterer radial velocity, and normally
distributed random phase terms representing transmitter/receiver phase jitter and ground
clutter random motion. The random phase terms simulating phase jitter and ground
clutter motion are updated for each transmitted pulse while the uniformly-distributed
phase terms are updated for each sequence of pulses in a range bin. The phase terms
representing aircraft-scatterer relative motion are linear functions of time.

The basic equations used to calculate the I and Q pulse streams represent the
pulses as the sum of many incremental scatterers, and may be written as follows:

N

I(t) = _ AicosE_i+_[Vi-Va)t+A_]+l_(t ) (1)
i=1

where

N

e(t)= AisinE i+13(Vl-Va)t+A ]+ (t) (2)
i=1

A_ is the amplitude of the return from scatterer i,

is the random phase of scatterer i,

13is 2_/;_,

V_ is the radial velocity component of scatterer i,

Va is the radial component of aircraft velocity,

A_ is the (random) transmitter phase error,

n(t) is the (random) receiver noise term, and

N is the number of scatterers in the calculation.
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Since weather return at X-band is known to remain coherent over an appreciable
fraction of a second, the scatterer random phase is held constant over a complete frame
of approximately 128pulses, while the transmitter jitter and noise random phasevariables
change from pulse-to-pulse as discussed previously.

Path attenuation for each incremental scatterer is determined by integrating the
path losses over the transmission path. The path loss is determined by converting the
reflectivity values obtained from the microburst data base (at each point along the
transmission path) into moisture content and then using empirical formulas (Doviak et al.
1984) to determine the incremental path losses from the moisture content.

Antenna patterns simulated include a generic parabolic antenna with size and
aperture illumination taper specified by input data and a flat-plate array antenna with a
pattern similar to that found in the current generation of X-band airborne weather radars.
The latter antenna model consists of data obtained from actual antenna/radome
measurements taken in the NASA-LaRCanechoic chamber.

A sequence of N pulses of in-phase (I) and quadrature (Q) signal amplitudes are
calculated for each range bin as discussed above and subjectedto AGC amplification and
analog-to-digital (A/D) quantization. A simulated fast-acting AGC is used to adjust the
gain of the system on a bin-by-bin basis to achieve a wide dynamic range and to prevent
signal saturation (due to clutter) prior to and during A/D conversion. The I and Q pulse

stream is then digitally filtered to suppress ground clutter near zero Doppler frequencies

and processed using both conventional pulse-pair and spectral averaging algorithms to

derive the average velocity and spectral width of the scatterers in the range bin. Further

processing of the velocity data provides an estimate of windshear and aircraft hazard
factor.

Provision is made in the simulation to generate returns from a specified number of
range bins over several azimuth scans so that simulated color map displays of reflectivity,

velocity, shear, spectral width, and hazard factor can be examined using a PC-based

graphics program. Other outputs of the simulation include data for plots of power levels,
velocity, spectral width, hazard factor, and AGC levels vs. radar range. Doppler spectra

of ground clutter and moisture as derived from the I and Q signals from each simulated

range bin can also be output and plotted if desired.

3.2.1 Clutter Model

The ground clutter model used for the initial simulation runs was a high-resolution

X-band SAR map of the Willow Run, Michigan, airport area provided by the Environmental

Research Institute of Michigan (ERIM). This airport area was selected for preliminary

studies primarily because a SAR map of the area was available from previous ERIM

efforts associated with SAR research. Under NASA sponsorship, ERIM later collected X-

band SAR data at the Denver and Philadelphia terminal areas. The Denver data is

extensive, with coverage of the terminal area at various grazing and azimuth angles.
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The SAR map file was calibrated by ERIM personnel (using ground corner
reflectors) to provide normalized cross-section data with a resolution of 20m. In the

simulations, the aircraft is positioned at a selected distance from the runway touchdown

point on a three-degree glide slope.

3.2.2 Moving Clutter Model

Discrete moving targets for the simulation are generated by a supplemental

program called WXDGEN. This program uses statistical data on highway traffic densities
and vehicular speeds to generate a data base consisting of a large number of discrete

targets on highways associated with a specific ground clutter map. Roadway and traffic

count data for input to the WXDGEN program are obtained from high-resolution aerial

photographs that coincide with the areas covered by the ERIM SAR clutter maps.

The data base generated by WXDGEN provides up to 80,000 discrete targets with

coordinate locations, velocities, and RCS values assigned to each target. The data base

also contains targets such as aircraft on departure or approach paths.

The radar simulation uses the discrete target data by calculating the received

amplitude and (random) phase of each discrete target within the integration area defined

ground intercept of the integration volume discussed previously. Equations (1) and (2)

are then used to calculate the contribution to the I and Q amplitudes by the discrete
targets.

3.3 General Description of the Flight Data Processing Program

The windshear flight data processing program (CMPRS) is a program used to

process raw radar data files from the NASA experimental windshear radar system.

Algorithms in the program reduce the basic in-phase (I) and quadrature (Q) radar return

pulses taken at each range bin into filtered and unfiltered power, Doppler velocity, and

Doppler spectral widths for each range bin. Various type of Doppler clutter filters and

velocity estimators can be applied to the raw data. The program usage has been
previously described in Britt (1993).

The program provides up to five output files, each of which contains data

processed with a user-defined set of signal processing techniques. The output files

contain the processed radar data and the radar system auxiliary file. The radar auxiliary

file contains information on the radar parameters, scan angles, aircraft location and

attitude, in-situ hazard measurements, and other parameters of interest. Output files from
the program are intended to be used as input files to the windshear radar "Quick-Look"

program (Britt et al. 1993). The Quick-Look program contains windshear hazard detection

algorithms and provides for display and analysis of the processed radar measurements.

The algorithms implemented in the CMPRS program include: a) Time-domain

filtering with three user selectable IIR or FIR filters, b) Time-domain weighting of the radar

data stream with Hann or Hamming data windows, c) Autoregressive (AR) spectral

processing, d) Fast Fourier Transform (FFT) spectral processing, e) Line editing of
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spectral lines (i.e., spectral domain filter), f) Pulse-pairspectral mean and width
estimators, and g) Spectral averaging mean and width estimators.

Various combinations of the above algorithms can be user-selected to test a large
set of signal processing techniques. Figure 3.3 shows a chart of the various algorithm
combinations that may be used.

_V

TIME DOMAIN

PULSE-PAIR

RADAR I & Q DATA

I TIME DOMAINWEIGHTING

I TIME DOMAINFILTERING

l
I FFT

I
IAuT°REGREss'vEI

I

LINE EDIT I

4,
SPECTRAL

PULSE-PAIR

SPECTRAL

AVERAGING

I
MEAN VELOCITY

SPECTRAL WIDTH

SIGNAL POWER

Figure 3.3 Chart Showing Signal Processing Algorithms that may be selected in
the Flight Data Processing (CMPRS) Program.
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3.4 Certification Evaluation Techniques

3.4.1 Simulation Model Algorithms Used

The set of algorithms associated with the generation of radar I and Q signals from
the microburst model were extracted from the overall radar simulation (AWDRS)

described above and were incorporated into the program used for processing flight data

(CMPRS) from the NASA experimental radar system. Algorithms associated with

generation of simulated ground clutter and simulated discrete targets were not used in the

program used for the certification simulation.

3.4.2 Merging Flight and Simulated Data

The proper scaling and merging of flight and simulated data is critical to the

success of the certification methodology for system performance evaluation. To

determine possible problem areas and to serve as a guide to the use of the technique, the

methodology has been applied to the NASA experimental system.

The data merging problem is illustrated in Figure 3.4. Figure 3.4a shows a

simplified system gain model with gain to the IQ detector output of G/A. G is a constant

system power gain factor (obtained by system calibration tests) and A is the value of the
automatic gain control (AGC) attenuation factor. The flight data (clutter) provides actual

IQ voltages and AGC levels, whereas the simulation (weather) module (from the ADWRS

program) provides IQ voltages and associated power levels referenced to the system

input. The desired merging process is illustrated schematically in Figure 3.4b, where the

simulated weather signal is added to the real clutter signal to provide new IQ values and

AGC levels. It is not possible to implement this process as shown because the real radar

signals are available only at the IQ level and data merging must take place at this level.

If the system were completely linear, the merging at the IQ level could be

accomplished by multiplying the simulated IQ pulse voltages by the square root of G/A

and adding them to the real IQ voltages. The AGC levels would remain unchanged in this

method however, and realistic AGC levels would not be available to output to subsequent

analysis programs. This would effect the AGC thresholding processes used in the hazard

detection algorithms. Also, small non-linearities in the system do exist and these would

not be accounted for by this method.

There are several sources of non-linearity in the actual NASA system. These

include; 1) the A/D converter acts somewhat as a limiter in that the AGC system is

designed to allow approximately 5% of the IQ voltages to exceed values of maximum A/D

output range (i.e. +/- 2048 millivolts); 2) the AGC system is designed to provide a constant

averaged (over one frame of pulses) power level input to the A/D converter and therefore

large clutter power levels will lower the weather signal-to-quantization noise ratio; and 3)

the AGC is linear with power over a large but limited range. The net effect of these non-

linearities is to cause suppression of small weather signals by large clutter signals and
viceversa.
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Figure 3.4 Diagrams Showing the Data Merging Problem for the NASA
Experimental System.

Figure 3.5 shows a plot of the decrease in signal-to-quantization noise power ratio

as a function of clutter-to-weather signal power ratio (CSR). As may be seen, the CSR

must get relatively large before this effect becomes significant when using a 12-bit A/D

converter. For A/D conversion using a smaller number of bits, the effect becomes

significant at lower values of CSR.

3.4.3 Data Merging Technique

A method of superposition that can provide realistic AGC and IQ voltages and take

into account the non-linearities discussed above has been developed and implemented

(version V of the simulation program). This method calculates a new AGC gain level

based on the averaged (over one frame of pulses) power of the real IQ voltages and the

averaged power of the simulated weather IQ voltages. This new AGC level is a value that
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Figure 3.5 Decrease in signal-to-quantization noise ratio as a function of clutter-to-
weather signal ratio.

would maintain a constant average power level at the input of the A/D converter. Using

the models illustrated in Figure 3.6, the new value of AGC is found by

G / Pic + Pis) _ AcPIQc+ GPis

At = Pk - Pk
(3)

where

At = Recalculated AGC level,

Ac = AGC level of real (clutter) data,

G = System Gain Calibration Constant,

Pic = Averaged Power of real (clutter) IQ voltages,

P_s = Averaged Power of simulated (weather) IQ voltages, and

PIQc = Power input to A/D converter (assumed constant).
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Figure 3.6 Illustrating the Method of Data Merging Used to Assure Proper
Scaling of the Flight and Simulated Data for the NASA System.

Using the model shown in Figure 3.6 as a guide, the proper factors to use to scale

both sets of IQ voltages prior to summing are calculated. These factors are as follows:

Ac]Fc - _tt
(clutter) (4)

1

Fs = IA_I "_ (weather),
(5)

where the nomenclature is defined above.
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Usingthese multiplication factors, the new merged values of I and Q arecalculated
from the real and simulated values for each radar pulse as:

It = IcFc+ IsFs (6)

Qt = QcFc + IsFs' (7)

where the c subscripts refer to clutter data and the s subscripts refer to simulated weather
data. These new IQ values are then passed through simulatedA/D converter algorithms
that properly quantize the new values and then pass them, along with the new AGC
values, to the signal processing routines of the data compression program for further
processing into the power and velocity data which is written to the output files. A chart
illustrating the combined simulation/flight data processing method used for evaluation of
the NASA system is shown in Figure 3.7.

MODIFIED

FLIGHT DATA

PROCESSING

PROGRAM

FLIGHT TEST
DATA

FLIGHT DATA

PROCESSING

WEATHER

SIMULATION

SIGNAL

PROCESSING

l QUICK LOOK 1PROGRAM

AIRCRAFT POSITION

GROUND CLU-I-I'ER

RADAR PARAMETERS

MICROBURST IDATA SET

SIMULATION IPARAMETERS

DISPLAY &

DATA ANALYSIS

Figure 3.7 Chart Showing the ModifiedFlight Data Processing Program Used for
Testing the Certification Concept.
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4.0 Certification Simulation Case Runs

4.1 Windshear Database Description

The database was selected from a larger set of case studies conducted with the

TASS model as described in Switzer et al (1993). It is designed to provide a wide range

of scenarios for the testing of look-ahead sensors. The database is divided into nine data

sets from seven case-study simulations. Table 4.1 summarizes each of the seven cases
utilized in generating the nine certification data sets. The two additional data sets arise
because each data set is frozen in time and cases three and five have two model

simulation times. The windshear types represented include microburst types ranging

from: 1) small- to large-scale events, 2) low- to high-reflectivity events, 3) symmetrical to

asymmetrical events, and 4) weak to hazardous windshear. The database also includes

scenarios with: 1) growing and decaying events, 2) interacting microbursts, 3) windshear
with intervening rain, 4) microburst penetrating a ground-based stable layer, and 5) a gust

front with hazardous shear. Several of the numerically-modelled events in this database

represent real accident or incident windshear cases (Switzer et al. 1993).

4.2 Certification Path Scenarios

The six defined flight scenarios (Switzer et al. 1993) are:

1 Aligned for takeoff, near microburst

2 Aligned for takeoff, far microburst

3 Straight approach

4 Curved approach

5 Straight approach with drift

6 go-around

The first scenario is designed for the airplane to be in the headwind conditions of

the microburst while the second is for the airplane to enter the hazard 3 nautical miles

from brake release. The third is an ILS approach. The fourth scenario is a 90 ° turn onto

the final approach path. The straight approach with drift is the same as the third scenario

with a 25 ° drift angle. The final scenario is an ILS approach until 100 feet above ground

level (AGL) at which point a go around maneuver is initiated. Paths are specified by flight
direction of takeoff or approach. North, East, South, West correspond to flight direction

or track 360, 90, 180, and 270, respectively. Table 4.2 details each of the path definitions

utilized in this study. Paths are defined by data set, scenario, and path direction.

Additional information is included in the table about the peak FBAR and radar reflectivity

along the path.
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Table 4.1 Description of Windshear Certification Database (from Switzer et a1,1993)

o

Case
No.

Simulation Description

DFW Accident Case,
Wet Microburst,

Rain and Hail

6/20/91 Orlando, Florida,
NASA Research Flight,

Wet Microburst

7/11/88 Denver, Colorado,
Incident Case,

Multiple Microburst

7/14/82 Denver, Colorado,
Stable Layer, Warm Mi-

croburst

7/8/89 Denver, Colorado,
Very Dry Microburst

Derived Florida Sounding,
Highly Asymmetric

Microburst

8/2/81 Adjusted Knowlton,
Montana Sounding,

Gust Front

Model
Simulation

Time

(minutes)

11

37

49

51

36

40

45

14

27

Stage of
Evolution

for

Primary
Microburst

Peak

Intensity

Peak
Intensity

Develop-
ing

Near Peak

Past Peak
but Quasi-

Steady

Near peak

2nd Pulse

Decaying

N/A

Approximate
Peak

1-kilometer
FBAR

@ 150 kts

0.20

0.19

0.08

0.20

0.29

0.18

0.16

0.16

0.14

Approximate
Diameter of
Outflow @

Peak AV
(km)

3.5

3.5

1.0

N/A

Approximate
Microburst

Core
Reflectivity

(dBZ)

55

50

35

20 - 40

27

17 - 20

50

20
(in area of

largest
FBAR)

Intervening
Rain

No

Yes

Light

Yes

No

No

Light

No

Temp.
Lapse
Rate

Adiabatic

Adiabatic

Adiabatic

Stable
Layer

Adiabatic

Adiabatic

Adiabatic

Symmetry

Axisymmetric

Rough
Symmetry

Varies
Between

Microbursts

Axisymmetric

Rough
Symmetry

Asymmetric

Asymmetric

Asymmetric



Table 4.2 Certification Path Descriptions (from Switzer et a1,1993)

Data Set

Case 1
11 min

Case 2
37 min

Scenario Direction

East

East

South

West

East

Approx.
Peak
FBAR

0.2

0.14

0.14

0.19

0.06

Approx.
Peak RRF

(dBZ)

57

55

50

50

50

Notes

Takeoff roll occurs outside domain of

data set, with sensor looking into the
data set.

Approach may begin outside the
boundary of the data set.

About 4 km of intervening rain on path
prior to encountering hazard.

Runway touchdown zone is in clear air
with microburst and 50 dBZ precipita-

tion at far end of runway.

Below-alert threshold case. FBAR of

.08 exists 500 m right of path; 0.17 ex-
ists 2.5 km right of runway touchdown
zone.

Case 3 3 East 0.08 25 Microburst strength is below alert
49 min threshold.

3 North 0.13 37 Light precipitation about 2 km from
event with moderate to heavy occur-
ring about 1 km to right of max shear.

Case 3 1 North 0.17 24
51 min

2 East 0.19 37

0.15

0.18

42

42

41

42

0.17

0.13

360 o

045 o

090 o

135 °

Takeoff is in very weak shear with 20
to 35 dBZ precipitation, followed by
about 1 km of clear air before encoun-

tering a 0.19 FBAR shear in 25 dBZ
precipitation.

Mostly clear view of threat, with rain on
each side of path.

Path between 2 small rain cells (30-35
dBZ) about 3 km short of runway.

Passes through intervening cell (20-30
dBZ and FBAR = .08) for last 4 km of

approach to primary threat
(FBAR=.17).

Passes along edge of adjacent precip-
itation cell before primary threat.
Strong shear exists at far end of run-

way.
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Table 4.2 Certification Path Descriptions (concluded)

Data Set Scenario Direction Approx. Approx. Notes
Peak Peak RRF

FBAR (dBZ)

Case 3 3 270 ° 0.17 41 3 km from runway path touches edge
51 min of strong shear to south producing

weak shear and 5-10 dBZ on path.

3 315 o 0.2 42 Penetrates 0.2 FBAR shear 3-4 km

short of runway, with 25 dBZ precipita-
tion. Primary shear has peak FBAR of
0.13 along path. Should detect both.

Case 4 1 East 0.23 27 Microburst has very small rain shaft:
36 min diameter of 5 dBZ contour is less than

1 km at 50 m altitude.

3 East 0.24 27

Case 5 2 West 0.18 22 Diameter of 5 dBZ contour ~1.6 km.

40 min About 1 km to each side of primary
shear is FBAR of about .12-.15, with
reflectivity of less than 0 dBZ.

3 North 0.16 17

6 North 0.17 23

Case 5 3 North 0.15 7 2nd microburst pulse, extremely dry.
45 min Zero dBZ contour diameter <1 km.

Core penetration at 100 m altitude.

Case 6 3 360 ° 0.15 52 Clear view of windshear during ap-
14 min proach.

3 045 o 0.18 50

3 090 o 0.10 52 FBAR of .12 exists near path. Interven-
ing rain at 2.5 km prior to peak.

3 180 o 0.15 52 2 km of intervening rain prior to peak.

3 225 ° 0.19 50 Clear view of windshear during ap-
proach.

3 270 o 0.13 52 Clear view of windshear during ap-
proach.

3 315 o 0.13 52 Clear view of windshear during ap-
proach.

Case 7 1 West 0.12 50 Peak FBAR occurs about X = 22.3 km.

27 min Reflectivity in shear about 20 dBZ.

3 West 0.13 26
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4.3 Flight Clutter Data

The phase of flight that is vulnerable to hazardous windshear is below

approximately 1200 feet AGL. This corresponds to landing and takeoff conditions. The

proximity to the ground gives rise to additional requirements for a windshear radar to

properly distinguish between true windshear hazards and surrounding clutter. Clutter is

the radar return from objects located on or near an airport facility (e.g., buildings or nearby

roads with their associated traffic). The ability to determine what is ground clutter and

what actually constitutes a windshear threat is a crucial part of an airborne forward-

looking windshear radar. The certification requirements for a windshear radar by the FAA

have specific constraints on the location of the radar clutter to be used with the windshear

database; however, the NASA flight test program gathered clutter data prior to the

constraints being defined. Therefore the clutter from the flight test program that closely
matches the scenarios described above are used. No suitable clutter was gathered for

either the curved approach or the straight approach with drift. The two primary clutter data

sets are from Philadelphia International Airport and Denver Stapleton Airport. An

additional set is used from Orlando International airport.

4.3.1 Clutter Flight Test Description

The clutter data from Philadelphia International Airport is used to simulate both

landing and go-around approaches. The particular clutter is taken from a landing

approach to runway 26R. The go-around approach is modelled by placing the microburst

at the far end of the runway while for the Straight approach it is placed near the middle

marker (900 meters from runway threshold). Clutter from Denver Stapelton Airport is
used to simulate both of the takeoff scenarios. The clutter is obtained for takeoff from

runway 35R. One simulation case utilizes the takeoff clutter from runway 18R at Orlando

International Airport. The environment surrounding Orlando International Airport has very
low levels of clutter. This data demonstrates the effect of clutter to hide the hazard. These

three ground clutter data sets comprise all of the clutter utilized for this performance study.

4.3.2 Philadelphia Landing Approach Clutter Data

Figure A.1 shows the clutter environment of runway 26R. The Delaware river is

seen in the foreground of the reflectivity plot and the traffic on Interstate 95 is shown in

the wind velocity plot. The various buildings surrounding the runway are also evidenced

by the high clutter areas near the runway.

4.3.3 Denver Takeoff Clutter Data

Figure A.2 shows the clutter reflectivity for the Denver runway 35R. No distinct

features are present. There are strong returns from the terminal on the left and other

buildings in the airport vicinity.
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4.3.4 Orlando Takeoff Clutter Data

The clutter gathered at Orlando International airport contains very low clutter
levels. This data is only used for one case.

4.4 Simulation Case Runs Performed

Each scenario is simulated by placing the microburst at a location relative to the
runway threshold. The relative location of the microburst for each path scenario is
described in Switzer et al. (1993). The syntax usedto refer to each radar simulation case
will be made up of the TASS case number, the TASS simulation time, and the path
scenario as described in section 4.2 connected by underscores. For example case 1 at
11 minutes for a go-around is 1 11 6. For data sets with more than one ILS approach,
the path scenario will have a letter appended to isolate each case (e.g., case 3 at 51
minutes on ILS track 135 is 3 51 3d).

Additional runs have been performed with enhanced reflectivity values for all
scenariosof cases4_36, 5_40, and 5_45. These cases have been denoted by appending
an "er" to the end of the case number. The levels of reflectivityenhancement correspond
to the FAA and industry accepted values and are labeled on Table 4.3. The case that
utilizes the low clutter environment of Orlando and is referred to by appending "lc". Table
4.3 labels each path that was simulated in the first column. The grayed areas represent
runs that were not performed for a particular case.
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Table 4.3 Performance Summary for NASA Certification Simulation Runs

Po
Ol

Case No

1112

1113
2 37 3a
2376
2 37 3b
3 49 3a
3 49 3b
351 1
351 2
3 51 3a
3 51 3b
3 51 3c
3 51 3d
3 51 3e
3 51 3f
436 1
4 36 ler
436 3
4 36 3er
5402
5 40 2er
5 403
5 40 3er
5406
5 40 6er
5 45 3
5 45 3er
6 14 3a
6 14 3b
6 14 3c
6 14 3d
6 14 3e
6143f

Case Name

DFW(11)

DFW(11 )
Fla.Wet(37)
Fla.Wet(37)
Fla.Wet(37)
Den Inc.(49)
Den Inc.(49)
Den Inc.(51)
Den Inc.(51)
Den Inc.(51)
Den Inc.(51)
Den Inc.(51)
Den Inc.(51)
Den Inc.(51)
Den Inc.(51)
Den Stab(36)
Den Stab(36)
Den Stab(36)
Den Stab(36)
Den D_(40)
Den Dry(40)
Den D_(40)
Den Dry(40)
Den Dry(40)
Den Dry(40)
Den D_(45)
Den Dry(45)
Fla Asy(14)
Fla Asy(14)
Fla Asy(14)
Fla Asy(14)
Fla Asy(14)
Fla Asy(14)

Path Definition

Takeoff East

Takeoff North 31

Mont GF(27)

Advanced Warning Time, sec

Clutter82 _ Truth82

Approach East 104
Approach South 106
Go Around 158
Approach East 92
Approach East 34 42
Approach North 35 35

31
Takeoff East 76

0 Approach
45 Approach
90 Approach
135 Approach
270 Approach
315 Approach
Takeoff East
Takeoff East

Approach East
Approach East
Takeoff West
Takeoff West

Approach North
Approach North
Go Around N.
Go Around N.

Approach North
Approach North
0 Approach
45 Approach
90 Approach
180 Approach
225 Approach
270 Approach

97
101
104

100, 101
102
58
N

32 (1)
N

26 (1)
22 (2)
26 (3)

42
48
N

N (4)
N

N (5)
45

52, NU
51, NU

31
59
93

6_14_3g Fla Asy(14) 315 Approach 72
7 27 1 Takeoff West N

Mont GF(27) Takeoff West

Mont GF(27)

7 27 11c

Approach We_7273
32 (6)

49

77

I 32 I

I N I

I 95 I

I FBAR Values Outflow Refl.

Clutter NN__ Truth @Max Vel.,dBz

Ave. PeakllAve_.[.Peakl IAve. Peak NW TW

.15 .1711_ 1.51 .176 46 46
104 II .16 1.204 _ .15 .186 43 43
109 II .14 1.170 _ ,13 ,153 47 50
158 II .13 1.1621_1 .12 .165 45 43
100 II .14 I .1701_1 .13 .161 46 37
. 11 .12I1 12 09 o98 10 16

35 14 164 _17 12 142 20 17
31 .13 .137 .178 .14 .!70 18 18

82 .13 .158 _ .14 .200 23 20
105 .14 .169 _ .13 .139 21 15
110 II .14 1.1791_1 .14 .183 24 17
104 II .14 I .1791_1.13 .154 27 24

153,45 .13 I .143 I .13 I .1561 .11 .125 24 36
106 .13 1_.169 .13 .147 20 32
59 II .16 1.2041_1 .16 .197 14 22
33 I_1 .16 1.21511 .16 .257 4 4
33 II .14 1.2001_1 .16 .257 19 19
29 I__1 .12 .144 4 4
29 II .14 1.2051_1 .12 .144 19 19
78 _1 .12 I .1311 .14 .190 0 -10
78 _r_"n]_m185r__ .14 .190 10 0

104 .14 .185 1.13 1.1771 .14 .190 -4 -10
104 1.14 1.1921_1.14 .190 6 0
155 _1 .121.1341 .14 .180 -4 -10
155 1__1.14 .180 6 0
72 __ .12 .133 -11 -11
72 __ .12 .133 0 0
46 I1.11 1.1181_1.12 .131 51 44
52 11.141.1761_1.13 .180 47 49
N .13 1.158 .13 .144 .09 .102 15 22

26 .17 J.204 I .16 1.2041 .12 .131 34 2259 14 175_ .13 .184 47 48
88 .13 .162 .12 .13711.13.155 43 47
N 1.12 1.1261 .12 .15511.09 .11 43 46

32 .13 .165 20 21

95 II .15 1.18011.14 1.17611.14 .184 20 21

N= No Alert NU= Nuisance Alert The "No Clutter" cases include Radar system noise. TW, HW= Tail/Head Wind

1. Refl. increased by 15 dBZ. Limit at 28 dBZ 4. Refl. increased by 10 dBZ. Limit at 17 dBZ

2. Detected after Takeoff, 642' AIt. 5. Refl. increased by 11 dBZ. Limit at 5 dBZ

3. Refl. increased by 10 dBZ. Limit at 17 dBZ detected after Takeoff, 546' AIt. 6. Run with lower clutter airport (Orlando)



5.0 Radar Simulation Test Results

5.1 Summary Performance Results

Table 4.3 shows the results for all of the simulation runs performed. There are
three types of simulations performed: clutter, no clutter, and truth. Clutter simulates what

a radar would see in the real environment and truth represents what is actually in the
TASS dataset along the radar line of sight. No clutter is a run without the ground clutter

being mixed with the information from the TASS dataset. The column of advance warning
time shows the time that an alert first appeared on the display. The average FBAR is the
largest value of all the icons shown at the time of first alert. The peak value is obtained
by manually searching inside of the icon(s) to locate the highest value. All FBAR values

are 1 km averaged. The final two columns show the reflectivity at the location of peak
headwind or tailwind. The results for advanced warning time show a minimum of 22
seconds with values up to 158 seconds. The cases that are very dry (i.e. low reflectivity:
5_40, and 5_45) or small (4_36) are not detected. Most cases detect the hazard with the
same warning time as the truth cases did; however, some cases did not detect a hazard
where the truth clearly shows a hazard. Some of the results have been included as PPI

plots in appendix B. Out of all of the cases there are only two nuisance alerts.

Appendix B contains PPI plots for selected simulation runs. Each plot is taken at
the time of first alert and contains both hazard and the wind velocity displays. The plots
have the runway outlined in black and the flight path denoted by white dots. The runway
location is labeled on each plot. A modified grayscale zebra shading pattern is used in
order to retain the information contained in the original color PPI plots. The hazardous

windshear and tailwinds are denoted by darker shades. Appendix C gives more specific
analysis of some of the PPI plots by comparing the hazard and velocity along a constant
azimuth as a function of range in front of the aircraft position. The line plots show the
comparison of radar simulation results and truth. In addition, the reflectivity is plotted to
help explain why simulation and truth differ.

5.2 Analysis of Each Simulation Run

5.2.1 ILS Landing Approach Cases

Dallas Fort Worth Accident Case, Wet Microburst, Rain and Hail

Case 1 11 3

Figure B.1 shows a windshear threat at 6 km away from the aircraft position.
This corresponds to an advance warning time of approximately 104 seconds. The
hazard is represented by two icons with a peak 1 km F- factor of 0.16. The wind
velocity plot shows the distance of peak-to-peak velocity of approximately 3 km.

Figure C.1 shows good agreement for the velocity with the hazard agreeing well on
the near side of the event.

26



Florida NASA Research Flight, Wet Microburst

Case 2 37 3a

Figure B.2 shows the windshear threat at 7.5 km away from the aircraft position

with a 1 km average F-factor of 0.14. Figure C.2 shows the relatively high levels

of reflectivity well in advance of the hazard. The clutter runs show an overestimate

of the peak hazard level.

Case 2 37 3b

Figure B.3 shows two regions of hazard of equal value. The approximate

distance from peak headwind to tailwind is 3 km. The icons are located at 7 km

away from the aircraft on first alert. The comparison of Figure B.4 with hazard and

wind velocity for case 2 37 3b shows the difference of adding clutter to a

simulation. The region of hazard is smaller in the truth case and the two separate

icons with the clutter case are spread farther apart. Figure C.3 shows the clutter

with a higher peak hazard than the truth.

Denver Incident Case, Multiple Microburst

Case 3 49 3a

Figure B.5 shows one small area of hazard at 3 km away from the aircraft

position. The value for the F-factor is 0.11 and is situated to the right of the aircraft

landing path. The velocity plot shows that the icon is located over nearby Interstate
95.

Case 3 49 3b

Figure B.6 displays two hazard icons. The larger is about 2 km from the aircraft

and along the flight path while the other is off the right at 2.5 km from the aircraft.

The magnitude of both icons is in the "must alert" category. The velocity plot shows

a well defined transition from headwind to tailwind at 3 km along the flight path.

The location of peak hazard in Figure C.4 displays good agreement with the hazard

lying between two reflectivity peaks.

Case 3 51 3a

Figure B.7 gives an example of an alert detected at a long range from the

aircraft. The single icon is along the path and at 7.5 km from the aircraft.

Case 3 51 3b

The advance warning time differs by only 9 seconds between the clutter and

truth runs as shown in Table 4.3. The FBAR values also compare very well.
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Case 3 51 3c

Figure B.8 shows an array of three icons with hazards ranging from 0.12 to
0.14. The closer two icons are at 4.5 km with one being on the flight path. The
farther most hazardous icon is also along the flight path and is at the 7 km range.
The region between the two iconson the flight pathshows a regionof performance
increasing windshear (not a hazard). Figure B.9 shows the truth hazard. The truth
differs from the simulated radar bythe addition of a new region of hazard at 9.5 km
and the coalescing of the two closer icons at 4.5 km. Also the magnitude of the
hazard at 7 km is reducedand the inner icon is no longer along the flight path. The
clutter result of the hazard at 7 kmahead of the aircraft compares well with the truth
inFigure C.5. The disagreement in the hazard at 4.5 km is due to the radarsplitting
the hazard into two regions. The magnitude is the same as shown in Figure B.8
but the location is displaced.

Case 3 51 3d

This case also has both simulated radar returns and truth plots. Figure B.10
displays three icons of magnitude 0.13. Of the closer two icons only the smaller is
actually an alert since the larger hasonly one bounding box (on the next scan the
region becomes an alert). The rangeto these hazard regions is 3 km. Also at 7
km a region of hazardous windshear exists. Figure B.11 shows good agreement
betweensimulated radar and truth. The difference between the two is primarily the
larger size of the alerting region beyond the runway for the truth case. Figure C.6
shows two hazard regions. The nearfield hazard is over estimated whereas the
farfield is not only under estimated but also much smaller which is consistent with
the PPI plots of Figures B.10 and B.11.

Case 3 51 3e

The agreement in warning time and FBAR values are very good as shown in
Table 4.3.

Case 3 51 3f

Figure B.12 shows three icons ranging from 0.12 near the runway threshold to
0.18 at 3 km from the aircraft. The large area of hazard has a peak hazardfactor
of 0.17 and lies along the aircraft flight path. There exists 2 km of performance
increasing windshear prior to encountering the hazardous region. The velocity plot
clearly shows a change from headwind to tailwind starting at about 3.5 km range.
Figure C.7 show very good agreement in the location of the peak hazard.

Denver Stable Layer, Warm Microburst

Case 4 36 3

No detection of a hazard in the original data.

Case4 36 3er

Figure B.13 shows a very small region of hazardous windshear with a
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magnitude is 0.14 at 1.5 km from the aircraft position. Figure B.14 shows the true
hazardcondition. The truth shows good agreement to the radar simulation. Figure
C.8 shows the relative comparison of the hazard levels. The peak hazard level is
larger than the truth with the width being in good agreement.

Denver Very Dry Microburst

Case 5 40 3

No detection of a hazard in the original data.

Case5 40 3er

Figure B.15 shows two rectangular icons at 2 km in front of the aircraft. The

icons are aligned along the flight path with the more severe at 0.14 magnitude.

Figure B.16 shows the truth for this case. The size of the truth is considerably

larger than the radar simulation and also a larger value (0.15). The hazard is

significantly larger than the radar simulation as seen in Figure C.9. The reason for

the discrepancy is due to the small region of reflectivity above 0 dBZ.

Case 5 45 3

No detection of a hazard in the original data.

Case5 45 3er

No detection of a hazard in the enhanced data.

Derived Florida Sounding, Highly Asymmetric Microburst

Case 6 14 3a

Figure B.17 displays three small hazardous regions. The magnitude ranging

from 0.11 to 0.13. The range to the closest alert box is 3 km and is on the flight

path. The closest and most severe hazard region has not yet become an alert box.

Figure C.10 shows excellent agreement for both hazard and velocity.

Case 6 14 3b

Figure B.18 shows two hazardous regions of 0.13 magnitude with one being on

the flight path and at 3 km range from the aircraft position. Figure B.19 shows the

truth for this case and displays only one icon. This icon is the same magnitude size

and location as the radar simulation figure. The truth figure shows the edge of the

windshear data set at rages from 7 to 10 km. Figure C.11 displays very good

agreement for both hazard and velocity.

Case 6 14 3c

This case is a nuisance alert. The region of peak hazard is only 0.09 while the
radar returns 0.13 which is above the "must alert" threshold.

Case 6 14 3d

The peak hazard is over-predicted by 25 percent. The time of warning is at 31
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seconds from encounter.

Case 6 14 3e

Figure B.20 shows numerous regionsof hazardous windshear. The area to the
left of the aircraft and at 2km range contains hazards of magnitude 0.12. The
largest icon lies along the flight path at 4 km range and is 0.14 in magnitude. The
most severe icon is at 3.5 km to the right of the path and a value of 0.18. The peak
hazard as shown in Figure C.12 displays very good agreement. The radar shows
a departure from the truth on the far side of the hazard.

Case 6 14 3f

The comparison of warning time and FBAR values shows good agreement in
Table 4.3

Case 6 14 3g

This is a nuisance alert. The FBAR values as shown in Table 4.3 display an
over estimate of the hazard such that the level is boosted from above the "must
alert" threshold.

Adjusted Montana Sounding, Gust Front

Case 7 27 3

Figure B.21 shows only one icon, but it is along the flight path and has a

magnitude of 0.15 at 3 km from the aircraft position. The hazard is shown to have

good agreement in both range and magnitude in Figure C.13.

5.2.2 Takeoff Cases

Dallas Fort Worth Accident Case, Wet Microburst, Rain and Hail

Case 1 11 2

Figure B.22 displays a very large area of hazardous windshear of 0.15

magnitude. The icon is located at 5.5 km from the aircraft and 3 km from the end

of the runway. Also the velocity gradient is clearly shown.
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Denver Incident Case, Multiple Microburst

Case 3 51 1

Figure B.23 shows a rectangular icon at the departure end of the runway with
a value of 0.13. There are also icons to the left and the right of this icon at about

the same range.

Case 3 51 2

Figure B.24 displays three icons with one along the flight path. The closer icon
is at 3.5 km but is off to the left. The icon along the path is at 5.5 km or 3 km from

the end of the runway and has a magnitude of 0.11. Figure B.25 shows the truth

for this case. Larger magnitudes are shown in both primary regions with the outer

region encompassing the two outer icons from the radar simulation. The

differential of magnitude is 0.03 from the truth to the radar simulation.

Denver Stable Layer, Warm Microburst

Case 4 36 1

No detection of a hazard in the original data.

Case4 36 ler

Figure B.26 shows a single icon at the departure end of the runway elongated

along the runway direction and having a magnitude of 0.15. Figure B.27 displays

the truth for this case. The truth shows a larger region of hazardous windshear but
at the same location.

Denver Very Dry Microburst

Case 5 40 2

Table 4.3 shows the hazard being detected after takeoff with only 22 seconds

warning time. The truth run showed an increase in warning time by almost a
minute.

Case 5 40 2er

The enhanced reflectivity doesn't significantly change the results as compared

to no enhancement (Table 4.3).

Adjusted Montana Sounding, Gust Front

Case 7 27 1

No detection of a hazard in the original data.

Case7 27 11c

The lower clutter environment shows very good agreement with truth results

(Table 4.3).

5.2.3 Go Around Cases
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Florida NASA Research Flight, Wet Microburst

Case 2 37 6

Figure B.28 displays two icons at the range of the departure end of the runway

or 10 km from the aircraft position. One of the icons resides at the end of the

runway.

Denver Very Dry Microburst

Case 5 40 6

No detection of a hazard in the original data.

Case 5 40 6er

No detection of a hazard in the enhanced data.
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6.0 Conclusion

This report described the NASA airborne windshear radar hardware, signal

processing algorithms, and the experimental flight tests. The details of the radar

simulation program have been explained showing how the flight data and the simulated

weather data are merged to give an accurate representation of the performance of the

NASA airborne windshear radar. Finally, the results of the simulation testing detailing the

flight scenarios and clutter data have shown the ability of the NASA system to detect
hazardous windshear.

The NASA Airborne radar system has been shown to perform extremelywell in a

wide range of environmental conditions and path scenarios. The ability of the system to
detect hazardous windshear behind intervening rain and in areas of severe ground clutter

demonstrate the strengths of the system; however, the two nuisance alerts and the

inability to detect hazardous windshear in areas of extremely low reflectivity demonstrate

the weaknesses of NASA Doppler radar. The alert for all cases was displayed with at

least 1.5 km distance from the aircraft or approximately 30 seconds prior to penetration

giving time and space to execute the proper windshear encounter procedure. The

favorable comparison of truth and clutter simulation runs for a select number of cases

exhibits the ability of the radar system to capture the salient details of the hazardous
windshear; however, they also show that the radar detects a subset of the true hazard.

This demonstrates that there may be areas of undetected hazardous windshear outside
of the alert boxes. The overall result is that the NASA airborne windshear radar can detect

hazardous windshear with a high degree of reliability.
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Appendix A

Selected Clutter Plan Position Indicator Diagrams
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Figure A.1 Clutter reflectivity and wind velocity for Philadelphia runway 27R. The wind velocity plot shows the traffic clutter
from nearby Interstate 95. The white dots indicate the aircraft flight path.
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Appendix B

Selected Plan Position Indicator Diagrams
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Figure B.3 Hazard and wind velocity for case 2 37 3b
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Figure B.4 True hazard and wind velocity for case 2 37 3b
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Figure B.5 Hazard and wind velocity for case 3 49 3a
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Figure B.6 Hazard and wind velocity for case 3 49 3b
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Figure B.8 Hazard and wind velocity for case 3 51 3c
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Figure B.9 True hazard and wind velocity for case 3 51 3c
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Figure B.10 Hazard and wind velocity for case 3 51 3d
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Figure B.12 Hazard and wind velocity for case 3 51 3f
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Figure B.18 Hazard and wind velocity for case 6 14 3b
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Appendix C

Selected Line Plots of Variables Along a Constant Azimuth
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Case #3_51_3c ILS Landing Approach
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Figure C.5 Comparison truth and radar along 0 ° azimuth for case 3 51 3c
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Case #3_51_3d ILS Landing Approach
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Figure C.6 Comparison truth and radar along -10 ° azimuth for case 3 51 3d
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Case #6_14_3b ILS Landing Approach
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C.11 Comparison truth and radar along 2 ° azimuth for case 6 14 3b
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